Phyllotaxis and Rhizotaxis in Arabidopsis Are Modified by Three PLETHORA Transcription Factors

نویسندگان

  • Hugo Hofhuis
  • Marta Laskowski
  • Yujuan Du
  • Kalika Prasad
  • Stephen Grigg
  • Violaine Pinon
  • Ben Scheres
چکیده

BACKGROUND The juxtaposition of newly formed primordia in the root and shoot differs greatly, but their formation in both contexts depends on local accumulation of the signaling molecule auxin. Whether the spacing of lateral roots along the main root and the arrangement of leaf primordia at the plant apex are controlled by related underlying mechanisms has remained unclear. RESULTS Here, we show that, in Arabidopsis thaliana, three transcriptional regulators implicated in phyllotaxis, PLETHORA3 (PLT3), PLT5, and PLT7, are expressed in incipient lateral root primordia where they are required for primordium development and lateral root emergence. Furthermore, all three PLT proteins prevent the formation of primordia close to one another, because, in their absence, successive lateral root primordia are frequently grouped in close longitudinal or radial clusters. The triple plt mutant phenotype is rescued by PLT-vYFP fusion proteins, which are expressed in the shoot meristem as well as the root, but not by expression of PLT7 in the shoot alone. Expression of all three PLT genes requires auxin response factors ARF7 and ARF19, and the reintroduction of PLT activity suffices to rescue lateral root formation in arf7,arf19. CONCLUSIONS Intriguingly PLT 3, PLT5, and PLT7 not only control the positioning of organs at the shoot meristem but also in the root; a striking observation that raises many evolutionary questions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis.

Lateral organ distribution at the shoot apical meristem defines specific and robust phyllotaxis patterns that have intrigued biologists and mathematicians for centuries. In silico studies have revealed that this self-organizing process can be recapitulated by modeling the polar transport of the phytohormone auxin. Phyllotactic patterns change between species and developmental stages, but the pr...

متن کامل

Arabidopsis PLETHORA Transcription Factors Control Phyllotaxis

The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may cha...

متن کامل

The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in Arabidopsis.

Plant leaves and flowers are positioned along the stem in a regular pattern. This pattern, which is referred to as phyllotaxis, is generated through the precise emergence of lateral organs and is controlled by gradients of the plant hormone auxin. This pattern is actively maintained during stem growth through controlled cell proliferation and elongation. The formation of new organs is known to ...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

The shoot apical meristem and development of vascular architecture1

The shoot apical meristem (SAM) functions to generate external architecture and internal tissue pattern as well as to maintain a self-perpetuating population of stem-cell-like cells. The internal three-dimensional architecture of the vascular system corresponds closely to the external arrangement of lateral organs, or phyllotaxis. This paper reviews this correspondence for dicotyledonous plants...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013